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The separation o f  gas mixtures on fine-pore membranes is analyzed with allowance for interphase effects, 
which occur during the nonisothermal f low of  a gas in pores. 

Borman et al. [1-3] have made a theoretical study of mass transport under nonisothermal conditions in pores, 
whose diameter is smaller than the phonon mean free path of a solid. In this case the transport equation contains an 
additional term, which is proportional to the temperature gradient in the solid, depends on the temperature and channel 
diameter, but is independent of the molecular mass. This term is due to the interaction of gas molecules and phonons 
of the nonequilibrium solid. Depending on the direction of the gas-density and temperature gradients, the gas flow 
through a pore can either increase while simultaneously the mixture separation factor decreases or, conversely, the 
separation factor increases while the flow decreases. 

Here we propose a mathematical model and report the result of computational modeling of gas separation on 
f ine-pore membranes under nonisothermal conditions for the case when allowance must be made for the interphase 
effect  of the interaction of  gas molecules with phonons of a nonequilibrium solid. 

Let  us consider a flat f ine-pore  membrane (Fig. 1). The initial gas mixture (consisting of N components with 
relative molar concentrations x i (i = 1 . . . . .  N)) in the high-pressure chamber (HPC) at temperature T 1 and pressure P1 
penetrates in the free-molecule mode through pores of the membrane into the low-pressure chamber (LPC), where the 
relative molar concentrations of  the components of the gas mixture are xi'(i = 1 ..... N) and the temperature and pressure 
are T 2 and Pg., respectively. 

We shall assume that surface diffusion has a negligible effect  on the flow of the gas mixture in the pores of the 
membrane and the accommodation coefficient  is equal to 1. 

Borman et al. [3] obtained an expression for the average velocity (over the pore cross section) of the i- th 
component of  the mixture 

(1) 
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and showed that the second term in this expression for light gases does not depend on the molar mass of the i-th 
component and has the same value for all components of the mixture. 

Using (1), we can write an expression for the flux density of  the i - th  component,  penetrating through the 
membrane, in the form 

- - (2) ea~Vid d (p~T-1/2) ec~s  p, dT i = 1 N. 
i ~ 2~1~ -V ~ dz ~I~T~ d ~  . . . . . .  

The first term on the right side of Eq. (2) is the flux density of the i - th  component of  the mixture and is due 
to the existence of  pressure and temperature gradients [4]. The second term is proportional to only the temperature 
gradient. This term makes allowance for the effect  that the drag on gas molecules by phonons of the membranes has on 
the flux Jl. 

We write Ji in terms of the given P1, T1, P2, T~. For this purpose we integrate (2) over the thickness of the 
membrane from 0 to 6. We confine the discussion to light gases. Since the product ciA F at T - 300 K depends weakly on 
the temperature, for  simplicity we assume that ciA r is independent of T. Moreover,  we replace the pressure Pi in the 
second term of  Eq. (20) by the average partial pressure of the i- th component (Pli + P2i)/2. We also note that although 
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Fig. 1. Diagram of organization of the process. 

the flux density Ji is a function of z, the flow of the i - th  component of  the mixture penetrating through the membrane 
does not depend on the coordinate z, on the assumption that the system consisting of  gas and pore wall is in local 
equilibrium. 

Integrating (2) with allowance for these assumptions, we obtain an expression for the flux density of the i-th 
component of  the mixture penetrating through the membrane: 

§ 
~RT16 (Pli @ P21) ~ v T~ 

(3) 

Denoting Qi = eaiVli d/(2~RT1), with allowance for the obvious equalities x i = Pli/P1 and x i" = p2i/P2 we recast 
(3) in the final form 

J~ &P~ (x~ *x" (4) - -  - - ? i  i), i =  1, N ,  

where 

T2 . 

Tg T~ T2 

k[  = 2Cis /(ai~,  i = 1 . . . . .  N, y = P'~/Pl. 

(5) 

(6) 

We note that as ki F ---, 0 formula (3) goes over into the familiar formula [5] for  the gas flux density thlough a 
porous membrane, when pressure and temperature drops exist at the ends of  the pores. The ratio of  coefficients ki F and 
kj r (i ~ j) is proportional to v/'~-7~j, since coefficients c i and cj are proportional to f f~ i  and f f~ j ,  respectively, and 
coefficients a i and aj d i f fer  insignificantly, as a rule. 

Since the composition of  the mixture in the HPC is constant, the concentration x(  in the LPC appearing in (4) 
can be calculated from a formula similar to that given in [6]: 

�9 Qi Xi 
xi = N (7) 

*X" 
h = l  

Let us analyze Eq. (4) at different  values of TqTffT~ for a binary gas mixtures, assuming that the components are 
numbered in order of  increasing molar mass. 

When T I ~  ( ~  > 1) increase at not very large temperature differences the effective permeability 
coefficients QI* and Q2* increase and 71 and 72 decrease in comparison with the same quantities in the absence of a 
temperature drop in the membrane. As a result, on the one hand, the membrane output in respect to the penetrating gas 
flow increases and, on the other hand, its selective properties diminish. 

A decrease in v~i~-ffT2 on condition that ~ < 1, as is seen from (5), causes an increase in QI* and, thelefore, 
in the membrane output along with a simultaneous increase in the selectively. It follows from (6) that 7i will also 
increase. Several cases can be observed, depending on the process parameters. 
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Fig. 2. Helium concentration x 1' in gas flow penetrating through a porous 
membrane as a function of the temperature drop AT(K); x 1 = 0.3: 1) "/ffi 
0, 2) 0.1, 3) 0.2, 4) 0.4, 5) x 1 = xx/"/1 , x 1 = 0.7. 6) "/= 0, 7) x 1 = Xl / " / 1  . 
Fig. 3. Relative membrane output with respect to penetrating gas as a 
function of the temperature drop AT(K); x 1 = 0.3: 1) 6 = 0, 2) 0.1, 3) 0.2, 
4) 0.4. 

Let us consider the case when the c o n d i t i o n  '/1"* < X1 i s  satisfied for all value of the temperature satisfying the 
relation ~ 2  > (k2 v --  1)/k2 v. For any membrane material this condition can be achieved by choosing the value of 

, /= P2/P1. 
From (5) it follows that as ~ decreases the quantities Qi* decrease, with QI* always greater than Q2*. As 

m w F * " 
v~I/T~. --* (k2 F --  1)/k2 the value of Q2 "-* 0. As a result, virtually only one component begins to penetrate through the 
membrane and the composition x 1" --, 1, x 2" ~ 0 is established in the LPC. As TvT1/T ~ decreases fur ther  the permeability 
of the first component is lowered and QI* ffi 0 at Tvr~7-T'I/T2 = (kl F --  l ) /k l  F. The condition "/1 -< xl should be satisfied 
in this case. If  "/1 --' xl inside the interval (kl F --  1)/kl F < v / T ~  < (k2 F --  l)/k2 F, then J1 ---' 0 in accordance with 
(4) and the membrane becomes impermeable to the mixture at a temperature gradient corresponding to the conditionn 

"/1 = Xl"  

Suppose now that the condition 71 > xl begins to be satisfied at ~/'~7"T2 > (k~. F - -  l)/k~. F- In this case the 
penetration through the membrane is determined not so much by the variation, of  the permeability Qi* as by.the increase 
in "/1 �9 As 4T- -~2  decreases, as already mentioned, the values of "/1 grow and the difference "/2 --  "/1 is always 

2 

greater than zero and increases in absolute value. Analysis of (4) with allowance for x; = Y~)~ YT~ (i = 1, 2) under these 
h = l  

conditions shows that the value of x 1' grows with the temperature gradient and the fluxes of  both components decrease. 
When the value of v~l'--~2 is such that for all i we have 

, , (8) 
Xi =" ~ i  X i ,  

the fluxes of all components through the membrane simultaneously become zero, i.e., the mixture ceases to penetrate 
and an equilibrium composition is established in the LPC; this composition is determined by the solution of the system 
of equations 

* X "  x ~ + x 2 =  1, ~ * x ~ + ~ 2  2 =  1, (9) 

where the second equation was obtained by summing (8). The solution (9) for  a binary mixture has the form 

~ - l  , x s  l - v *  (lO) 
~[= v . _ v t  ~ - ~  

We can easily prove that the fluxes of the components disappear simultaneously by considering the opposite 
scenario. Suppose that J2 ffi 0 and J1 > 0. Then this means that x 1" = 1, which cannot occur since at x 1 < '/1"x1' we 
immediately get J1 < 0 f rom (4). 

The functional dependence x 1" = xx/'/l* is an equation which describes the locus of  points at which the 
membrane output with respect to the penetrating flow is zero. On the other hand, the formula 

.,c; == Q~*xz 
, , i =  1, 2, (11 )  

Q ~ X 1  "'I- Q 2  X~ 

gives the values of  x 1" at ' / =  0. Equations (10) and (1 1) determine the range of allowable values of xl". 
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As an example we give the calculation of  the parameters of  separation of  a two-component  He - -N  2 mixture on 
a porous membrane  of  the nuclear filter type with a mean pore diameter  d ~ 100 A and component  permeabilit ies QHe 
= 10.10 -12 mole/m2-sec.Pa and QN2 -- 3"7"10-12 m~ Here and below the subscript i takes on a value of 1 for 
helium and 2 for  nitrogen. 

Let us assign the values Pi = 9.8"103 Pa and T i = 293 K for  the pressure and temperature,  respectively, in the 
HPC. The values of  the coefficients ki t` are difficult  to determine. For convenience we set ki F ---- 3.7 and k2 I' = 10.0, 
which is close to the theoretical estimates for  polymer  membranes [3]. The calculations were carried out for  different 
concentrations of  the components in the mixture and the values of  the gas pressure and temperature in the LPC. 

Figure 2 shows the curves of  the helium concentration x i" versus the temperature  drop at the membraae  AT = 
T 2 - -  T p  The regions of  possible compositions of  mixture in the LPC are contained between curves I and 5 for x i -- 0.3 
and curves 6 and 7 for  x i = 0.7. The points of  intersection of  the curves with the ordinate axis (AT = 0) corret;pond to 
Knudsen separation in the isothermal case for different  values of  7. Curves 3 and 4 end at the point of  intersection with 
curve 5, which was plotted for  the case when x i" = xffT1 �9 The equilibrium composition of  the mixture at these points 
is determined f rom (10). The points of  intersection of  curves I,  2 with 5 and curve 6 with 7 correspond to the p3int Qz* 
=0.  

Figure 3 shows the graph of  the membrane output in relative units L/L('7 = 0, AT = 0) against AT at different  
r  p 

values of  "I for  the composition x i -- 0.3. Curves 3 and 4 intersect the abscissa axis at the points where x i = 7i x i .  The 
break points of  curves 1 and 2 correspond to Q2 = 0. The membrane output becomes zero on curves 1 and 2 ~t points 
where Ql* = 0 and x i = 7i , respectively. 

In summary,  in our study we have shown that the separation effect  and output  of  a membrane, ~ under 
nonisothermal conditions are determined by the process parameters and have also determined the limits of  the separation 
effect  of  binary gas mixtures. 

NOTATION 

N, number  of  components of  the mixture being separated; Xi, concentration of  the i - th  component  in the high- 
pressure chamber; Pi, gas pressure in the HPC; T i, gas temperature in the HPC; xi', concentration of  the i - th component 
in the low-pressure chamber; P2, gas pressure in the LPC; T2, gas temperature in the LPC; ui, average (over the pore 
cross section) velocity of  the i - th  component  of  the mixture; a i and c i, coefficients that depend on the interactio a of  the 
i - th component  of  the mixture with the pore surface; Vi, mean thermal velocity of  the i - th  component; ~, pore 
diameter; Pi, density of  the i - th  component  of  the mixture; T, gas temperature; At, phonon mean free pat~: in the 
material of  the membrane;  Ji, flux density of  the i - th  component  penetrating through the longitudinal sectior of  the 
porous membrane;  s, porosity coefficient  of  the membrane;  ~, pore sinuosity coefficient; d, mean diameter  of  pores in 
the membrane;  R, the universal gas constant; Pi is the partial pressure of  the i - th  component  of  the mixture; ~ is the 
coordinate; Pii, P2i, partial pressures of  the i - th  component  of  the mixture before and after  the membrane,  respectively, 
6, membrane thickness; Qi , permeabil i ty of  the porous membrane for  the i - th  component  of  the mixture through the 
porous membrane  under the conditions of  Knudsen flow; mi, molar mass of  the i - th  component.  
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